<u>Alpha</u>	onvention 2018									
1. What is $Im(z)$, the imaginary part of z, if $z - \overline{z} = 10i$?										
	(A) 5	(B) −5	(C) 10	(D) -10	(E) NOTA					
2			17i and -	1 . Ai ara alatt		av plana Find				
Ζ.	2. Two complex numbers $z_1 = 5 + l_i$ and $z_2 = -1 + 4l$ are plotted on the complex plane. Fin									
	the complex number that divides the line segment $z_1 z_2$ by 1:2 ratio with shorter segment									
	nearer z_1 .									
	(A) $2 + \frac{11}{2}i$	(B) 2 + 5 <i>i</i>	(C) 3 + 6 <i>i</i>	(D) 1 + 6 <i>i</i>	(E) NOTA					
	L									
-										
3.	Let z, w be two complex numbers with $ z = 2$ and $ w - 6 + 8i = 5$. What is the smallest									
	possible value	of $ z - w $?			(-)					
	(A) 3	(B) 5	(C) 10	(D) 17	(E) NOTA					
Λ	4 Let z be a complex number with $ z = 10$ Which of the following is equal to $\frac{z}{2}$?									
4.		Let z be a complex number with $ z = 10$. which of the following is equal to $\frac{1}{25}$?								
	(A) $\frac{1}{\bar{z}}$	(B) $\frac{2}{4}$	(C) 4 <i>z</i>	(D) $\frac{1}{4\bar{z}}$	(E) NOTA					
5.	If $z = 1 - i$ and $w = \sqrt{3} + i$, what is the argument of $\frac{\pi}{z}$?									
	(A) $\frac{\pi}{12}$	(B) $\frac{5\pi}{12}$	(C) $\frac{7\pi}{12}$	(D) $\frac{11\pi}{12}$	(E) NOTA					
	12	12	12	12						
6.	Simplify: $(-1 +$	⊦ i) ¹⁰								
	(A) 32	(B) −32	(C) 32 <i>i</i>	(D) -32 <i>i</i>	(E) NOTA					
_										
7.	Let $z = a + bi$	be the complex	number obtaine	d by rotating 2 -	$+4i$ by 135° cou	Interclockwise				
	about the origi	n. What is <i>ab</i> ?	6 - N - E	<i>i</i>	/					
	(A) 6	(B) —6	(C) 4	(D) —4	(E) NOTA					
0	Circult	10 <i>i</i>								
ö.	Simplify: $\frac{1-i}{(1-i)(2)}$	(2-i)(3-i)								
	(A) — <i>i</i>	(B) <i>i</i>	(C) −1	(D) 1	(E) NOTA					
0	What is the area of the region enclosed by a closed survey via the several systems if									
9.										
	$ z - \sqrt{3} - i\sqrt{2} $	= 13?								
	(A) 13π	(B) 100	π (C) 144	$c\pi$	(D) 169π	(E) NOTA				
10.	Find $a + b$ if tw	vo real numbers	u(1+2i) + b(2)	(-i) = 8 + 6i.						
	(A) 6	(B) 8	(C) 12	(D) 14	(E) NOTA					
11 Let z be a complex root of $z^5 = 1 - 0$. Which are of the following is equal to $1 + z + z^2 + z^2$										
11.	11. Let z be a complex root of $z^2 - 1 = 0$. Which one of the following is equal to $1 + z + z^2 + \dots + z^{2018} + z^{2019}$									
	$Z \rightarrow + Z^{$	r (D) i	(C) 1							
	(A) l	(B)—l	(C) I	(0) 0	(E) NOTA					

Alpha Complex Numbers

- 12. Let z and w be two nonzero complex numbers satisfying $z + \overline{z} = 0$ and $w + \overline{w} = 0$. What is the largest possible positive argument of $\frac{z}{w}$ less than 2π ?
 - (A) $\frac{\pi}{4}$ (B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$ (E) NOTA

13. For a complex number z, if the real part of $\frac{z-1-i}{z+1+i}$ is 0, what is the distance from the origin to the point z in the complex plane?

(A) $\sqrt{2}$ (B) $\frac{\pi}{2}$ (C) π (D) $\frac{3\pi}{2}$ (E) NOTA

14. Consider the equation $z^6 + z^4 - z^3 + z^2 + 1 = 0$. Which of the following statement(s) is true? a) $z^6 + z^4 - z^3 + z^2 + 1$ has three distinct integer factors of order 2.

- b) There are exactly 6 distinct roots over complex number system, which are three pairs of complex conjugates.
- c) The sum of the imaginary parts of all roots is positive.
- (A) b (B) b and c (C) a and b (D) a (E) NOTA

15. Given three vertices 4 + i, -1 - 2i, 2 + 7i of a parallelogram, which one of the following complex numbers can be the fourth vertex?

(A) 1 + i (B) 7 + 10i (C) -4 - 5i (D) -5 - 4i (E) NOTA

16. Let *m* and *n* be the smallest positive integers such that $(1 + i\sqrt{3})^m = (1 - i)^n$. What is the value of m + n? (A) 12 (B) 24 (C) 36 (D) 48 (E) NOTA

17. If 2 + i is a root of $f(x) = x^3 + ax^2 + bx - 20$ where *a* and *b* are real numbers, what is the value of a + b? (A) -5 (B) 5 (C) -13 (D) 13 (E) NOTA

18. Let z_1 and z_2 be two solutions of the quadratic equation $x^2 - 2x + 2 = 0$. If z is a complex number such that $\Delta z z_1 z_2$ forms an equilateral triangle, what is the sum of all possible values of z?

(A) 2 (B) 0 (C) $2\sqrt{3}$ (D) $\sqrt{3}$ (E) NOTA

19. Let z₁, z₂, z₃ be three complex numbers with |z₁ - z₂| = 7 and |z₂ - z₃| = 4. If we let *M* and *m* be the maximum distance and the minimum distance between z₁ and z₃, respectively, what is *M* + *m*?
(A) 11 (B) 12 (C) 13 (D) 14 (E) NOTA

20. Let z_1, z_2, z_3, z_4, z_5 be 5 vertices on the unit circle that form a regular pentagon. What is the product of the distances from one vertex to each of the other 4 vertices?

(A) 4	(B) 6	(C) 8	(D) 10	(E) NOTA
-------	-------	-------	--------	----------

- 21. For how many real numbers x is $(x + i)^4$ real? (A) 1 (B) 2 (C) 3 (D) 4 (E) NOTA
- 22. Let $w = \cos \frac{2\pi}{3} + i \sin \frac{2\pi}{3}$. Which one of the following is NOT true? (A) $w^2 = \overline{w}$ (B) $w^3 = -1$ (C) $\overline{w} = 1/w$ (D) $w^2 = -w - 1$ (E) NOTA
- 23. Which one of following best describes the graph of the equation |z| + |z 2 + 4i| = 3 in the complex plane?

```
(A) A line (B) A circle (C) An ellipse (D) A parabola (E) NOTA
```

- 24. Let z be a complex number and z̄ be the complex conjugate of z. If both z/10 and 10/z̄ have real and imaginary parts between 0 and 1, inclusive, what is the smallest value of |z|?
 (A) √2
 (B) 5√2
 (C) 10
 (D) 25
 (E) NOTA
- 25. When $i \frac{1}{i}$ is a root of a quadratic equation with real coefficients, what is the other root of the same equation?

(A) $i + \frac{1}{i}$ (B) 2i (C) $-\frac{2}{i}$ (D) $\frac{2}{i}$ (E) NOTA

26. If
$$f(n) = \left(\frac{1+i}{1-i}\right)^n + \left(\frac{1-i}{1+i}\right)^n$$
, find the sum $\sum_{n=1}^{2018} f(n)$.
(A) 2 (B) -2 (C) 2*i* (D) -2*i* (E) NOTA

27. Assume that z_1, z_2, z_3 are complex numbers with $\frac{z_2-z_1}{z_3-z_1} = \sqrt{3} + i$. If the area of the triangle $\Delta z_1 z_2 z_3$ is equal to 18, what is $|z_3 - z_1|$? (A) 4 (B) 5 (C) 6 (D) 7 (E) NOTA

28. Let z and w be two nonzero complex numbers satisfying $z^6 + z^3 + 1 = 0$ and $w^6 - w^3 + 1 = 0$. How many distinct complex numbers are possible for the value of zw?(A) 6(B) 9(C) 12(D) 18(E) NOTA

29. Let z_1 be the root of $z^5 = 1$ with the smallest positive imaginary part. Let z_2 be the root of $z^7 = 1$ with the smallest positive imaginary part. What is the argument of z_1z_2 ?

(A)
$$\frac{2\pi}{35}$$
 (B) $\frac{12\pi}{35}$ (C) $\frac{24\pi}{35}$ (D) $\frac{58\pi}{35}$ (E) NOTA

30. Let x and y be two nonzero complex numbers satisfying $x^2 + xy + y^2 = 0$. What is the value of $\left(\frac{x}{x+y}\right)^{100} + \left(\frac{y}{x+y}\right)^{100}$? (A) 0 (B) -1 (C) 1 (D) 2 (E) NOTA